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FNM, Koroška 160, SI-2000 Maribor, Slovenia

e-mail: bresar@uni-mb.si

Dedicated to the memory of Kostia Beidar

ABSTRACT

K. I. Beidar and Y.-F. Lin have recently showed that under appropriate

conditions a commutativity preserving map between (Jordan) algebras A

and Q is of a standard form, unless it sends a certain subset of A, which

one could describe (unless A is very special) as a “large” one, into the

center of Q. We give a supplement to this statement by showing that this

set often contains a nonzero ideal. In particular this makes it possible

for us to give the definitive description of commutativity preservers in

simple rings, as well as in prime rings provided that the map in question

preserves commutativity in both directions.

1. Introduction

Let A and B be rings. We say that a map α: A → B preserves commutativity

if xα and yα commute whenever x and y commute. The problem of describing

the form of such a map has been studied by a number of authors over the last

thirty years. Starting with the paper by Watkins [24] it has been first treated

in a series of linear algebraic papers in the context of algebras of matrices over

fields. In the 80’s these results have been extended to various operator algebras,

and finally in the 90’s the treatment has moved to ring theory. We refer the

reader to two recent papers [8, 20] for more references and historic details.

The first ring-theoretic result was obtained by the present author [10, Theo-

rem 2]. This result shows that the only bijective commutativity preserving linear
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318 M. BREŠAR Isr. J. Math.

maps between centrally closed prime algebras are, under certain mild techni-

cal assumptions, only the obvious ones, namely those that can be expressed as

sums of scalar multiplies of (anti)isomorphisms and maps with the range in the

center. In fact, instead of assuming that α preserves commutativity, only the

condition that

(1) [(x2)α, xα] = 0

holds for every x ∈ A was assumed (here, [u, v] denotes uv−vu). This condition

is of course weaker since x and x2 certainly commute. From then on (1) has been

studied in several ring-theoretic papers, and usually one refers (slightly inaccu-

rately) to maps satisfying (1) as to commutativity preserving ones (incidentally,

such maps actually do not always preserve commutativity [13, Example 2.1],

but as many results show, quite often they do). Let us point out that (1) deals

only with squares of elements in A, and so this condition makes sense if A is a

Jordan ring. On the other hand, the concept of a commutativity preserving map

is essentially a Lie ring-theoretic one (in particular it generalizes the concept of

a Lie homomorphism). Therefore, the interplay between the Jordan, Lie, and

associative structures naturally appears in the study of these maps.

One can view (1) as a special example of a functional identity, and the result

in [10] was obtained as an application of the theorem treating a more general

functional identity. In fact, [10] was the first paper in which applications of

the theory of functional identities were established. Later this theory has been

extensively developed, and culminated in the works by Beidar and Chebotar

on d-free sets [6, 7]. We will also use results on functional identities and d-free

sets. For an introductory account on this topic we refer to [11]. On the other

hand, a consensed survey, more than sufficient for our purposes, is contained in

Section 2 of the recent article [8]. This work by Beidar and Lin has been the

main inspiration for the present paper.

The starting-point of [8] is an ingenious example showing that [10, Theorem 2]

does not necessarily hold for prime algebras that are not centrally closed [8,

Example 1.2]. Then the authors considered maps α: A → Q satisfying (1)

in a very general setting where A is any algebra (or a Jordan subalgebra of

an algebra) and Im(α) is a 5-free subset of a unital algebra Q. Finally, they

applied the obtained results to the prime algebra context. They showed that if

α maps a prime algebra A onto a prime algebra B, then, under certain technical

assumptions, it must be of a standard form, unless α maps L = [[A,A],A] ◦

[[A,A],A] into the center of B [8, Theorem 1.3] (here, u ◦ v denotes uv + vu).
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A similar result was obtained for maps between symmetric elements of prime

algebras with involution [8, Theorem 1.4].

The work on the present paper begun by observing that the map from the

example by Beidar and Lin sends into the center a nonzero ideal, while the set

L from the theorem is “only” a Lie ideal. So, can the result by Beidar and Lin

be extended in such a way that the role of L would be replaced by an ideal?

We shall see that this is indeed true. First we will, in Section 2, consider the

general situation, and establish the key result, Theorem 2.4. Using this theorem

we will, in Section 3, extend the results by Beidar and Lin on prime algebras [8,

Theorems 1.3 and 1.4] by finding, under appropriate assumptions, nonzero ideals

that α sends into the center (Corollaries 3.4 and 3.9). Corollaries 3.6 and 3.10

illustrate the significance of our approach. They give the definitive conclusion

on α in two cases: in case of simple rings, and in case α preserves commutativity

in both directions (i.e., [x, y] = 0 if and only if [xα, yα] = 0). We remark that the

latter condition has also been studied extensively by a number of authors, but

only in some rather concrete algebras appearing in linear algebra or operator

theory. Therefore their characterization in general prime rings should be of

some interest.

Although our main intention is to give a supplement to [8], from the technical

point of view the present paper is almost independent of the paper by Beidar

and Lin. Namely, the general context in which we shall work in the next section

is slightly different from the one in [8]. On the one hand, this makes it possible

for us to approach the problem more directly, and on the other hand, to analyze

the prime ring case more carefully which yields somewhat better results with

respect to PI rings of low degrees.

2. The general case

The concept of a d-free subset of a ring will play a crucial role in the present

paper. To recall the definition, we have to introduce some notation. Let Q be a

unital (associative) ring with center C, and let R be a nonempty subset of Q. By

Rm, where m is a positive integer, we denote the Cartesian product of m copies

of R; for convenience we also define R0 = {0}. For elements x1, x2, . . . , xm ∈ R

we shall write

xm = (x1, . . . , xm) ∈ Rm.

Further, for any 1 ≤ i ≤ m we set

xi
m = (x1, . . . , xi−1, xi+1, . . . , xm) ∈ Rm−1,
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and for 1 ≤ i < j ≤ m we set

xij
m = xji

m = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1 . . . , xm) ∈ Rm−2.

Let I and J be finite subsets of the set of all positive integers, and let m be

such that I,J ⊆ {1, . . . , m}. Further, let Ei, Fj : Rm−1 → Q, i ∈ I, j ∈ J , be

arbitrary functions. The basic functional identities, upon which the theory of

d-free sets is based, are:

∑

i∈I

Ei(x
i
m)xi +

∑

j∈J

xjFj(x
j
m) = 0 for all xm ∈ Rm,(2)

∑

i∈I

Ei(x
i
m)xi +

∑

j∈J

xjFj(x
j
m) ∈ C for all xm ∈ Rm.(3)

The case when I or J is ∅, is not excluded. In such case it should be understood

that a sum over ∅ is 0.

A natural possibility when (2) (and hence also (3)) holds is when the Ei’s

and Fj ’s are of the following form:

Ei(x
i
m) =

∑

j∈J ,

j 6=i

xjpij(x
ij
m) + λi(x

i
m), i ∈ I,

Fj(x
j
m) = −

∑

i∈I,

i6=j

pij(x
ij
m)xi − λj(x

j
m), j ∈ J ,(4)

λk = 0 if k 6∈ I ∩ J ,

where pij : R
m−2 → Q, i ∈ I, j ∈ J , i 6= j, and λk: Rm−1 → C, k ∈ I ∪ J

are arbitrary functions. Indeed, one can easily check that (4) is a solution of

(2) (and hence also of (3)). We say that every solution of the form (4) is a

standard solution of (2) (and of (3)). For example, the (only) standard solution

of the functional identities
∑

i∈I
Ei(x

i
m) = 0 and

∑

i∈I
Ei(x

i
m) ∈ C is Ei = 0

for each i ∈ I (indeed, just consider the case when J = ∅). The d-freeness is

defined through the requirement that (2) and (3) have only standard solutions,

provided that the number of variables in these functional identities is small

enough. A precise definition reads as follows: We say that R is a d-free subset

of Q, where d is a positive integer, if for all finite subsets I,J of the set of all

positive integers, and for every m such that I,J ⊆ {1, 2, . . . , m}, the following

two conditions are satisfied:

(a) If max{|I|, |J |} ≤ d, (2) implies (4).

(b) If max{|I|, |J |} ≤ d − 1, (3) implies (4).



Vol. 162, 2007 COMMUTATIVITY PRESERVING MAPS REVISITED 321

For more details concerning this concept we refer the reader to [6]. The

definition of a d-free set is indeed a very technical one, but it has proved to

be extremely useful. One of the main reasons is that many important subsets

of various rings have turned out to be d-free. The basic result of this kind

states that a prime ring B is a d-free subset of its maximal right (or left) ring

of quotients Q, unless B satisfies St2d−2, the standard polynomial identity of

degree 2d− 2. This is explicitly stated in [6], but essentially proved in Beidar’s

path-breaking paper [2].

We shall now fix the notation that will be used throughout this section.

By J we denote an arbitrary Jordan ring. The product in J will be denoted

by ◦, and we shall write

[x, y, z] = (x ◦ y) ◦ z − x ◦ (y ◦ z)

for the associator of x, y, z ∈ J . We shall use the same symbol, ◦ , for denoting

the Jordan product in an associative ring (i.e. u◦v = uv+vu). This is of course

a slight abuse of notation; on the other hand, if J is a special Jordan ring (and

this is the case in which we are primarily interested), this notation is spotless.

Let us also point that by x2, where x ∈ J , we mean x ◦ x, so in case J is a

special Jordan ring this does not coincide with the square of x with respect to

the associative product.

By U ◦ V , where U and V are subsets of J , we denote the additive subgroup

generated by all elements of the form u ◦ v, u ∈ U , v ∈ V . Similar conventions

apply to various other additive subgroups generated by certain sets.

Next, by Q we denote a unital (associative) ring such that its center C is a

field; the latter is not a usual assumption in the theory of functional identities,

but it is fulfilled in the case in which we are primarily interested (i.e., when Q

is the maximal (right) ring of quotients of a prime ring and so C is the extended

centroid), and it will enable us to simplify the arguments. Moreover, we shall

assume that char(C), the characteristic of C, is not 2. For q, r ∈ Q we shall write

q ≡ r if q − r ∈ C.

Finally, α: J → Q will be an additive map satisfying (1) for every x ∈ J ,

and we assume that Im(α) is a 3-free subset of Q.

The above setting is similar, but not the same to the one considered in [8].

One difference is that we added the assumption that C is a field (and so, unlike

in [8], we are unable to cover the semiprime ring case). On the other hand,

we require “only” the 3-freeness of Im(α) while in [8] the 5-freeness was needed

most of the time. Further, in [8] only the case when J is a special Jordan
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ring was treated, but the arguments seem to work for general Jordan rings. As

a matter of fact, [8] deals with algebras over commutative rings, but we have

decided to work in the context of rings.

Clearly (1) is fulfilled if α is a Jordan homomorphism, i.e., (x ◦ y)α = xα ◦ yα

holds for all x, y ∈ J . More generally, (1) is fulfilled if α is of the form

xα = γxβ + ξ(x),

where γ ∈ C, β: J → Q is a Jordan homomorphism and ξ: J → C is an additive

map. In such a case we shall say that α is of a standard form.

Our ultimate goal is to show that under appropriate assumptions α must

necessarily be of a standard form. The first standard step in proving this is

to show that there exist λ ∈ C, an additive map µ: J → C and a symmetric

biadditive map τ : J × J → C such that

(5) (x ◦ y)α = λxα ◦ yα + µ(x)yα + µ(y)xα + τ(x, y) for all x, y ∈ J .

Relying heavily on the assumption that Im(α) is 3-free this follows easily from

the general theory of functional identities, see [8, Lemma 3.1]. The next natural

step is computing ((x2 ◦ y) ◦ x)α = (x2 ◦ (y ◦ x))α in two different ways (of

course these two expressions coincide in view of the Jordan ring axiom). This

was done already in [8, p. 1033]. For the sake of completeness, let us outline

these calculations. Using (5) twice we get

((x2 ◦ y) ◦ x)α ≡λ2((x2)α ◦ yα) ◦ xα + λµ(x)(x2)α ◦ yα + λµ(y)(x2)α ◦ xα

+ λµ(x2)xα ◦ yα + µ(x)µ(y)(x2)α

+ µ(x)µ(x2)yα{2λτ(x2, y) + µ(x2 ◦ y)}xα,

and in a similar fashion we derive

(x2 ◦ (y ◦ x))α ≡λ2(x2)α ◦ (yα ◦ xα) + λµ(x)(x2)α ◦ yα + λµ(y)(x2)α ◦ xα

+ λµ(x2)xα ◦ yα + {µ(x ◦ y) + 2λτ(x, y)}(x2)α

+ µ(x)µ(x2)yα + µ(x2)µ(y)xα.

Comparing these two expressions and using (1) we obtain

{µ(x)µ(y)−2λτ(x, y)−µ(x◦y)}(x2)α ≡ {µ(x2)µ(y)−µ(x2 ◦y)−2λτ(x2, y)}xα.

By (5) we have (x2)α = 2λ(xα)2 + 2µ(x)xα + τ(x, x) and so the last relation

can be rewritten as

(6) ε(x, y)(xα)2 + ν(x, x, y)xα ≡ 0 for all x, y ∈ C,
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where ε: J × J → C is a biadditive map given by

ε(x, y) = 2λ{µ(x)µ(y) − 2λτ(x, y) − µ(x ◦ y)},

and ν: J × J × J → C is a triadditive map given by

ν(x, x′, y) = 2λ{τ(x ◦ x′, y) − 2µ(x)τ(x′, y)}

+µ((x ◦ x′) ◦ y) + 2µ(x)µ(x′)µ(y) − 2µ(x ◦ y)µ(x′) − µ(x ◦ x′)µ(y)

A version of (6) was obtained also in [8]. From now on we proceed in a somewhat

different way then in [8]. First we record a simple general observation on d-free

sets.

Lemma 2.1: If P is an additive subgroup of Q such that every element in

P is quadratic over C (i.e., algebraic of degree ≤ 2), then P is not a 3-free

subset of Q.

Proof: If x ∈ P \ C then there exists a unique τ(x) ∈ C such that x2 ≡ τ(x)x.

Set τ(x) = 2x for x ∈ P ∩ C. We claim that x 7→ τ(x) is an additive map

from P into C. One could establish this by using [12, Theorem 2.1]. Let us

instead sketch a simple direct proof, using similar arguments as in the proof

of [25, Theorem 3, p. 37]. We pick u, v ∈ P and substitute u + v, u − v, u,

and v, respectively, for x in x2 ≡ τ(x)x; since char(C) 6= 2 it follows easily

that τ(u+ v) = τ(u)+ τ(v) whenever u, v, 1 are C-independent. So assume that

v = αu+β for some α, β ∈ C. Using v2 ≡ τ(v)v we infer that τ(v) = ατ(u)+2β.

Consequently, τ(u + v) = τ((1 + α)u + β) = (1 + α)τ(u) + 2β = τ(u) + τ(v),

proving our claim.

Accordingly, E: x 7→ x − τ(x) is an additive map from P into Q satisfying

E(x)x ∈ C for all x ∈ P , and therefore E(x)y+E(y)x ∈ C for all x, y ∈ P . Now,

if P was a 3-free subset of Q, then by the very definition it would follow that

E = 0, that is to say, P ⊆ C. But a subset of C of course cannot be 3-free.

The argument in the next lemma is sligthly different from those used at

similar places in [10] and [8]. This argument, which was suggested to us by

Maja Fošner, in particular makes it possible for us to get rid of the assumption

that C 6= GF (3) in [10, Theorem 2] (see Corollary 3.7 below).

Lemma 2.2: If λ 6= 0 then α is of a standard form.
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Proof: We first note that the complete linearization of (6) gives

ε(x, y)uα ◦ vα + ε(u, y)xα ◦ vα + ε(v, y)xα ◦ uα + (ν(x, u, y) + ν(u, x, y))vα

(7) + (ν(x, v, y) + ν(v, x, y))uα + (ν(v, u, y) + ν(u, v, y))xα ≡ 0

for all x, y, u, v ∈ J .

By Lemma 2.1 there exists x ∈ J such that xα is not quadratic over C.

Therefore ε(x, y) = ν(x, x, y) = 0 for all y ∈ J by (6). Setting x = u and y = v

in (7) we thus get ε(y, y)(xα)2 ∈ Cxα + C, which in turn implies ε(y, y) = 0 for

all y ∈ J . Since λ 6= 0 this means that µ(y)2 = 2λτ(y, y) + µ(y2). Linearizing

we get µ(x)µ(y) = 2λτ(x, y) + µ(x ◦ y). Accordingly, one can directly check, by

using (5), that the map β: J → Q given by

xβ = λxα + µ(x)/2

is a Jordan homomorphism. One completes the proof by defining γ = λ−1 and

ξ(x) = − 1

2
λ−1µ(x).

Let I be the ideal of J generated by [J , [J ,J ,J ] ◦ [J ,J ,J ],J ], and let L

be the ideal of J generated by I ◦ I. The next lemma is of crucial importance;

the novelties that this paper brings depend heavily upon it.

Lemma 2.3: If λ = 0 then Lα ≡ 0.

Proof: Since λ = 0, (6) reduces to ν(x, x, y)xα ≡ 0. Therefore, for each x ∈ J

we have either xα ≡ 0 or ν(x, x, y) = 0 for all y ∈ J . We claim that the

latter condition actually holds for every x ∈ J . If this was not true, then there

would be x0, y0 ∈ J such that ν(x0, x0, y0) 6= 0 (and so xα
0 ≡ 0). On the

other hand, since Im(α) is 3-free there exists x1 ∈ J such that xα
1 6≡ 0, and

so also (x0 + x1)
α 6≡ 0 and (x0 − x1)

α 6≡ 0. Consequently, ν(x1, x1, y0) = 0,

ν(x0 + x1, x0 + x1, y0) = 0 and ν(x0 − x1, x0 − x1, y0) = 0. But these relations

contradict 2ν(x0, x0, y0) 6= 0.

Thus ν(x, x, y) = 0 for all x, y ∈ J which can be, since λ = 0, rewritten as

µ(x2 ◦ y) = 2µ(x ◦ y)µ(x) + µ(x2)µ(y) − 2µ(x)2µ(y).

Linearizing we get

(8)
µ((x ◦ z) ◦ y) =

µ(x ◦ y)µ(z) + µ(z ◦ y)µ(x) + µ(x ◦ z)µ(y) − 2µ(x)µ(z)µ(y).
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Note that y and z appear symmetrically on the right hand side of (8). Therefore,

the left hand side remains the same after changing the roles of y and z, that is

to say, µ((x ◦ z) ◦ y) = µ((x ◦ y) ◦ z), or equivalently µ([z, x, y]) = 0. Setting

K = Ker(µ) we thus have

(9) [J ,J ,J ] ⊆ K.

We claim that the ideal of J generated by K∩(K◦K) is contained in K. Pick

u ∈ K ∩ (K ◦ K). Writing u =
∑

i xi ◦ zi with xi, zi ∈ K and using (8) we see

that u ◦ y ∈ K for all y ∈ J . Consequently, applying (9) it follows by induction

on n that

(((. . . ((u ◦ y1) ◦ y2) . . .) ◦ yn−2) ◦ yn−1) ◦ yn

=[(. . . ((u ◦ y1) ◦ y2) . . .) ◦ yn−2, yn−1, yn]

+ ((. . . ((u ◦ y1) ◦ y2) . . .) ◦ yn−2) ◦ (yn−1 ◦ yn) ∈ K

for all u ∈ K ∩ (K ◦ K), yi ∈ J , n ≥ 2, proving our claim.

Next, given x, y ∈ J and u1, u2 ∈ K we have

[x, u1 ◦ u2, z] = [x, u1, z] ◦ u2 + u1 ◦ [x, u2, z] ∈ K ∩ (K ◦ K)

(here we used the well-known fact that the map u 7→ [x, u, z] is a derivation).

That is, [J ,K ◦ K,J ] ⊆ K ∩ (K ◦ K), and so, in particular,

[J , [J ,J ,J ] ◦ [J ,J ,J ],J ] ⊆ K ∩ (K ◦ K).

Therefore, by the preceding paragraph we have

(10) I ⊆ K.

Since (5) shows that

(11) (x ◦ y)α ≡ µ(x)yα + µ(y)xα for all x, y ∈ J ,

it follows that (I ◦ I)α ≡ 0. Furthermore, given u, v ∈ I we have µ(u ◦ v) = 0

by (10), then (11) yields that for every y ∈ J we have

((u ◦ v) ◦ y)α ≡ µ(y)(u ◦ v)α ≡ 0.

Thus ((I ◦ I) ◦ J )α = 0. Using the linearized form of the Jordan ring axiom

(x2◦y)◦x = x2◦(y◦x) one easily infers that L = I◦I+(I◦I)◦J . Consequently,

Lα ≡ 0.

The following theorem summarizes what has been established above.
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Theorem 2.4: Let J be a Jordan ring, let I be the ideal of J generated by
[

J , [J ,J ,J ] ◦ [J ,J ,J ],J
]

, and let L be the ideal of J generated by I ◦ I.

Further, let Q be a unital (associative) ring such that its center C is a field with

char(C) 6= 2, and let α: J → Q be an additive map satisfying [(x2)α, xα] = 0

for all x ∈ J . If Im(α) is a 3-free subset of Q, then either α is of a standard

form or Lα ⊆ C.

As the referee pointed out, the class of maps satisfying the condition that we

consider, i.e. [(x2)α, xα] = 0 for all x ∈ J , includes also, by the very definition,

Jordan representations. Moreover, Theorem 2.4 seems to be new even for them.

Incidentally, (8) shows that the (central) map µ is a Jordan representation.

3. Some special Jordan rings

In this section we shall examine the ideal L in some particular Jordan rings J

(in fact, in special ones, i.e.,those that are Jordan subrings of associative rings),

and thereby obtain various corollaries to Theorem 2.4.

We shall assume throughout the section that all rings we are dealing with

have characteristic different from 2; we shall use this without further mention,

except in formulations of the main results.

Let us first point out that if L = J , then Lα ⊆ C cannot occur (since Im(α) is

a 3-free set), and so α is necessarily of a standard form. As another extreme, if

L = 0 then Theorem 2.4 does not give any useful information. This can indeed

occur but only in some very special cases. Let us first give a few comments

about this.

3.1. Quadratic Jordan algebras. Suppose that J is quadratic over a field

F , that is, J is a Jordan algebra over F and there exists a linear functional τ

on J such that x2 − τ(x)x ∈ F1 for all x ∈ J . If Q is any algebra over F ,

then every F -linear map α: J → Q that sends 1 into the center of Q satisfies

[(x2)α, xα] = 0 for all x ∈ J , and of course there is no reason why it should be

either of a standard form or why it should send a nonzero ideal into the center of

Q. The next lemma therefore does not come as a surprise. The referee pointed

out to us that this lemma is well-known and is contained for example in [16]

and [23]; but since the proof is short and straightforward, we include it anyway.

Lemma 3.1: If J is a quadratic Jordan algebra, then [J ,J ,J ]◦[J ,J ,J ] ⊆ F1

(and therefore the ideals I and L from Theorem 2.4 are both zero).

Proof: Note that every x ∈ J can be written as x = α1 + x′ where α ∈ F

and τ(x′) = 0. Hence we see that every associator [x, y, z] can be represented
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as [x′, y′, z′] with τ(x′) = τ(y′) = τ(z′) = 0. From the linearized form of

x2 − τ(x)x ∈ F1, that is

(12) 2x ◦ y − τ(x)y − τ(y)x ∈ F1,

we see that x′ ◦ y′ ∈ F1 and y′ ◦ z′ ∈ F1. Thus, [x, y, z] = λx′ + µz′ with

λ, µ ∈ F , which shows that τ([x, y, z]) = 0. The desired conclusion therefore

follows immediately from (12).

Now assume that J is any Jordan algebra over F that has a quadratic Jordan

algebra J0 as a homomorphic image. Further, if Q is any associative F -algebra

and α0: J0 → Q is a linear map sending 1 into the center of Q, then α = α0π,

where π is a homomorphism of J onto J0, satisfying [(x2)α, xα] = 0. This

gives us a variety of examples of maps that are not of standard forms, but their

kernels contain L (and I).

The appeareance of the ideals I and L in Theorem 2.4 may seem a bit artificial

at first glance, but now we have seen that there are good reasons for this.

3.2. Associative rings. In this subsection we will consider the case where

A is an associative ring and J = A+, i.e., J coincides with A as an additive

group, and is equipped with the Jordan product x ◦ y = xy + yx. Note that in

this case we have

[x, y, z] = [[z, x], y].

Therefore, I is the Jordan ideal of A generated by

[

[A,A], [[A,A],A] ◦ [[A,A],A]
]

,

and L is the Jordan ideal of A generated by I ◦ I.

We begin with an elementary observation concerning the ring A = Mn(R) of

n × n matrices, n ≥ 3, over an arbitrary unital ring R. By eij we denote the

matrix units in A. Note that for any three distinct i, j, k we have

(13) u =
[

[eik + eki, eii], [[eij + eji, eii], eii] ◦ [[eij + eji, eii], eii]
]

= 2(eik + eki)

and hence

(14) 8eii = eii ◦ ((eik + eki) ◦ u).

We shall apply these identities repeatedly, first in the proof of the next result.
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Corollary 3.2: Let R, S be unital rings and assume that the center of

S is a field of characteristic different from 2. Let n ≥ 3, m ≥ 3, and let

α: Mn(R) → Mm(S) be a surjective additive map such that [(x2)α, xα] = 0 for

all x ∈ Mn(R). Then α is of a standard form.

Proof: Since m ≥ 3, by [3, Corollary 5.12] we know that Mm(S) is 3-free (as

a subset of itself). Moreover, its center is a field by assumption and so the

conditions of Theorem 2.4 are fulfilled.

Suppose that α was not of a standard form. Then Lα would be contained in

the center of Mm(S). However, (14) shows that I contains all matrices of the

form 8eii, hence it contains 8id where id is the identity matrix, which in turn

implies that L contains 8id ◦ 8id = 27id. Accordingly, 28Mn(R) ⊆ L, implying

that 28Mm(S) is contained in the center of Mm(S) — a contradiction.

As already mentioned, the study of commutativity preserving maps originated

in linear algebra, and so Corollary 3.2 generalizes some of these results. On the

other hand, it partially improves [3, Corollary 6.8].

The case when n = 2 is really exceptional. Namely, if R = F is a field,

then M2(F) is quadratic over F . Therefore M2(F) (as well as of some of its

subrings) must really be excluded in general results. Recall that a prime ring

A satisfies St4, the standard polynomial identity of degree 4, if and only if A

can be embedded into M2(F) for some field F . Of course, in these rings I and

L are both 0. The next lemma shows that the converse is also true.

Lemma 3.3: Let A be a prime ring. If
[

[A,A], [[A,A],A] ◦ [[A,A],A]
]

= 0,

then A satisfies St4.

Proof: Our assumption can be read as that

(15) [[x1, x2], [[x3, x4], x5] ◦ [[x6, x7], x8]]

is a polynomial identity on A. By Posner’s theorem (see e.g. [15, Section 1.4]

or [21, Section 1.7]) the central closure AC of A is a finite dimensional central

simple algebra over C, the field of fractions of the center of A. Accordingly, if C

is the algebraic closure of C, then the C-algebra A = AC ⊗C C is isomorphic to

Mn(C) for some n ≥ 1. Of course, A also satisfies (15). But then (13) implies

that n ≤ 2. Consequently, A satisfies St4.

Corollary 3.4: Let A and B be prime rings, both of them of characteristic

not equal to 2 and not satisfying St4. If α: A → B is a surjective additive map
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such that [(x2)α, xα] = 0 for all x ∈ A, then either α is of a standard form or

there exists a nonzero ideal U of A such that α maps U into the center of B.

Proof: First of all, since B does not satisfy St4, it is a 3-free subset of its

maximal right ring of quotients Q [6, Theorem 2.4]. Thus the conditions of

Theorem 2.4 are fulfilled (in this context C is the extended centroid of B).

Therefore, α is of a standard form unless Lα ⊆ C; since α maps into B this is

the same as saying that Lα is contained in the center of B.

By Lemma 3.3, I 6= 0. Pick a nonzero a ∈ I. Then axa 6= 0 for some x ∈ A.

Since

(16) 2axa = a ◦ (a ◦ x) − a2 ◦ x

it clearly follows that I ◦ I 6= 0. That is, L 6= 0. Finally, by a well-known

theorem of Herstein [14, Theorem 1.1], L contains a nonzero ideal U of A, and

the proof is complete.

Remark 3.5: We claim that if α in Corollary 3.2 is of a standard form then the

Jordan homomorphism β, given in xα = γxβ + ξ(x), is either a homomorphism

or an antihomomorphism. On the one hand, this can be easily established by

modifying slightly the proof of a well-known Herstein’s theorem [14, Theorem

3.1], and on the other hand, the referee remarked that one can also use the

results in [17] and [22] to show this.

Corollary 3.6: Under the assumptions of Corollary 3.2, α must necessarily

be of a standard form provided that either

(a) A is a simple ring, or

(b) α preserves commutativity in both directions.

Proof: Since α is surjective and B is noncommutative, the case when (a) holds

is obvious. If α preserves commutativity in both directions, then α cannot map

a nonzero ideal of A into the center of B; namely, as a noncommutative prime

ring A cannot contain commutative nonzero ideals.

It is clear that in Corollary 3.2 the assumption that A does not satisfy St4 is

really necessary (even when α preserves commutativity, cf. [20, Theorem 1.1]).

There does not seem to be, however, any good reason why the same should be

required for the ring B. Let us conclude this subsection by showing that at least

in the situation considered already in [10] this assumption is indeed redundant.
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Now assume that A is a unital algebra over a field C. We say that A is

centrally closed over C if the extended centroid of A (and hence also the center

of A) is equal to C1.

Corollary 3.7: Let A and B be centrally closed prime algebras over a field

C with char(C) 6= 2, and suppose that A does not satisfy St4. If α: A → B is

a bijective linear map such that [(x2)α, xα] = 0 for all x ∈ A, then α is of a

standard form.

Proof: The key observation is that α satisfies (5) even when B satisfies St4,

and moreover, in this case we may take λ = 0. This follows by rewriting

[(x2)α, xα] = 0 as [q(y), y] = 0 for all y ∈ B, where q(y) = ((yα−1

)2)α, and then

applying [12, Theorem 3.1].

So, in any case (5) holds. Just as in [10, p. 535] one shows that α maps 1

into the center of B — all one has to do is to linearize [(x2)α, xα] = 0 and set 1

at appropriate places. Since A and B are centrally closed over C and α is linear

this implies that (C1)α = C1. Consequently, by taking y = x in (5) we see that

λ cannot be 0; namely, otherwise every element in A would be quadratic over

C which contradicts our assumption that A does not satisfy St4. Therefore,

λ 6= 0 so, in particular, B cannot satisfy St4. But then Lemma 2.2 can be

applied.

Corollary 3.7 removes two unnecessary technical conditions in [10, Theo-

rem 2]: the one that B does not satisfy St4, and the one that C 6= GF (3).

We remark that one can easily show a bit more about β in this case, namely

that it is either an algebra isomorphism or an algebra antiisomorphism from A

onto B (see [10, pp. 537–538]).

3.3. Symmetric elements. Let A be a ring with involution ∗. By S(A)

we denote the set of its symmetric elements, i.e. S(A) = {x ∈ A|x∗ = x}. Of

course, S(A) is a Jordan subring of A. In this subsection we shall consider the

case where α maps from S(A) onto S(B) where B is another ring with involution.

We shall follow a similar pattern as in the previous subsection.

Recall that the symplectic involution on the ring M2m(F) ∼= M2(Mm(F)) is

given by
[

a b
c d

]∗

=

[

dtr −btr

−ctr atr

]

where a, b, c, d ∈ Mm(F) and xtr denotes the transpose of the matrix x. Thus,

the set S of symmetric elements with respect to this involution consists of
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matrices of the form

(17)

[

a k
l atr

]

where a, k, l ∈ Mm(F) with ktr = −k, ltr = −l. One can easily check that

if m = 2 then S is quadratic over F , and so in this case the conclusion of

Lemma 3.1 holds. Therefore, the ring M4(F), and more generally, rings satis-

fying St8, will play a special role in the sequel.

Lemma 3.8: Let A be a prime ring with involution, and let S = S(A). If
[

[S,S], [[S,S],S] ◦ [[S,S],S]
]

= 0, then A satisfies St8.

Proof: We are assuming that S satisfies the polynomial identity (15). It is

well-known that the involution on A can be uniquely extended to the involution

on the central closure AC of A (see e.g. [9, Proposition 2.5.4]), and of course

S(AC) also satisfies (15). If ∗ is the involution of the second kind (i.e., ∗ is not

the identity on C), then C contains a nonzero element µ such that µ∗ = −µ,

hence every element in AC can be written as s1+µs2 with si ∈ S(AC), it follows

that A satisfies (15). Lemma 3.3 therefore tells us that A satisfies St4, and the

proof is complete in this case. So we may assume that ∗ is of the first kind (i.e.,

λ∗ = λ for all λ ∈ C). Let C be the algebraic closure of C. We extend ∗ to the

C-algebra A = AC ⊗C C by (x ⊗ λ)∗ = x∗ ⊗ λ. Then S(A) still satisfies (15).

Since S satisfies a polynomial identity, A is a PI ring (see [1] or [19]), and so as

in the proof of Lemma 3.3 we may conclude that A ∼= Mn(C) for some n ≥ 1.

If ∗ is the transpose involution on A then we see from (13) that n ≤ 2, so that

A satisfies St4 in this case. According to [9, Corollary 4.6.13] there is just one

case that remains to be considered: n = 2m and ∗ is the symplectic involution

on A. Just by considering matrices of the form (17) with k = l = 0 we are then

forced to conclude that Mm(C) satisfies (15), which by (13) implies that m ≤ 2.

Thus A ∼= M2(C) or A ∼= M4(C), and hence A satisfies St8.

Recall that an ideal U of a ring with involution is said to be a ∗-ideal if

U∗ = U .

Corollary 3.9: Let A and B be prime rings with involution and of charac-

teristic not 2. Suppose that A does not satisfy St8, and that B does not satisfy

St12. If α: S(A) → S(B) is a surjective additive map such that [(x2)α, xα] = 0

for all x ∈ S(A), then either α is of a standard form or there exists a nonzero

∗-ideal U of A such that α maps S(U) into the center of B.
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Proof: Since B does not satisfy St12, S(B) is a 3-free subset of its maximal

right ring of quotients Q (see [6, Lemma 2.2] and [5, Theorem 2.4]). Thus we

are in a position to apply Theorem 2.4. Assuming that α is not of a standard

form it follows that Lα is contained in the center of B. It remains to show that

L contains S(U) for some nonzero ∗-ideal U of A. In view of Herstein’s result

[15, Theorem 2.1.12] it suffices to show that L 6= 0.

Lemma 3.8 tells us that I 6= 0. Given a nonzero a ∈ I, there exists x ∈ S

such that axa 6= 0 [18, Lemma 3.1]. Therefore (16) shows that I ◦ I 6= 0. That

is, L 6= 0.

For the case when α is of a standard form, Beidar and Lin have proved more,

namely, that the Jordan homomorphism β can be extended to a homomorphism

on the subring generated by S(A) [8, Theorem 1.4]. We shall not consider this

matter here.

Corollary 3.10: Under the assumptions of Corollary 3.9, α must necessarily

be of a standard form provided that either

(a) A is a simple ring, or

(b) α preserves commutativity in both directions.

Proof: Since B does not satisfy St12, S(B) is not contained in the center of B.

One can easily check this directly (actually, S(B) can be contained in the center

only when B satisfies St4); on the other hand, this also follows from Lemma 3.8.

Thus, α must be of a standard form if (a) holds. One handles (b) in a similar

fashion; at the end one has to apply the fact that a nonzero ideal of a prime ring

is again a prime ring which satisfies the same standard polynomial identities as

the ring itself.

Possibly the assumption in Corollary 3.9 that B should not satisfy St12 is

redundant. However, we do not have tools avaliable to establish (at least) an

analogue of Corollary 3.7. Let us just remark that our method shows that the

assumption in [4, Theorem 3.1] that the characteristic should be different from

3 can be removed.
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[4] K. I. Beidar, M. Brešar, M. A. Chebotar and Y. Fong, Applying functional iden-

tities to some linear preserver problems, Pacific Journal of Mathematics 204

(2002), 257–271.
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